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Summary

          The Optimal Rank Values Calculator (2006 Version) is used to identify optimal rankings for 1:1

through 1:4 non-parametric future value prediction limits, providing numerical power estimates and

ratings as well.  It was designed as a stand-alone Visual Basic program which can be run on most

computers and fills the need for identifying maximal rank values less than the 1  or 2  highestst nd

background values used as a prediction limit in these tests.  1:3 and 1:4 tests in particular may

perform optimally (in the sense of balancing the design false positive rate and power) at lower

maximal rankings under certain input conditions.  In addition to providing better power, using a

lower maximal value also helps to avoid problems with background data set outliers by using rank

values more typical of a distribution.

          The calculator operates when the user provides four inputs: 1) the design cumulative false

positive error rate DCFP, 2) the background sample size n, 3) the number of tests against this

background r, and 4) the lowest allowable ranking j.  Please note that the calculator is designed

using inverse rankings of maximum values (i.e, the absolute maximum rank of any sample set of size

n is j = 1, the second highest is j = 2, etc.).  The lowest allowable rank is set as a default to j = n

(the lowest possible ranking) unless changed.  Program outputs are the achievable cumulative false

cumpositive rate "  at the optimal rankings, Unified Guidance power ratings (Good, Acceptable, and

Low) and fractional power estimates at 2F, 3F and 4F for each test.  The output reports the optimal

cumrank status for a test as "DCFP OK @ max = j" if the jth rank allows for an achievable "  less than

the DCFP.  If the DCFP is exceeded at the maximum rank (j = 1), the calculator reports this as "DCFP

exceeded at max=1".   Additionally, the calculator provides an estimate of the total expected

number of samples for r tests (including repeats) given a background level assumption for the test

outcomes.

 

          Two modes of operation are possible: identification of the optimal rankings and power for the

inputs just described, and an identification of the achievable cumulative false positive error rates

and power for the four tests when a fixed maximal rank value is specified.  The following examples

illustrate it's use in these two modes.

         Example 1.   Find the optimal rankings, achievable cumulative false positive error rates, and

power ratings for the four tests when the design cumulative false positive error rate is DCFP = .002,

the  background sample size is n = 56, and the number of tests is r =12

        Enter the following inputs:  DCFP = .002; n = 56; r = 12; and leave j = 56 as the default

minimum ranking.  Hit the Calculate button or Enter key.   The following information is provided:

Test Type # Samps Optimal RankStatus Achievable CFP  Power Rating  @ 2F    3F  4F
   1:1    12 DCFP exc. @ max = 1 .17647 Good .364 .732 .943

   1:2    12 DCFP exc. @ max = 1 .00713 Good .142 .544 .892

   1:3    12 DCFP OK @ max = 2 .00147 Good .162 .628 .938

   1:4    13 DCFP OK @ max = 5 .00172 Good .286 .791 .979 
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Summary

       These results indicate that both the 1:1 and 1:2 tests would exceed the target cumulative false

positive error rate even at the maximum ranking j = 1, the 1:1 test by a substantial margin.  The 1:3

test is optimized at the 2  highest maximum j = 2, while the 1:4 test can use the 5  highest value atnd th

optimality.  For the latter two tests, superior power is shown with the 1:3 and 1:4 tests at the three

F levels, although all four tests have "Good" power.  The number of expected samples and repeats is

12 for all but the 1:4 test (13).  Only a modest increase in samples would be expected.

     Example 2.  Identify the achievable false positive error rates and power at the maximum rank

value, using the same n and r inputs as Example 1.

 

      In order to find the achievable false positive error rates using the maximum value, replace the

design input error rate DCFP with 1.0, and the allowable ranking j with 1.  The outputs generated

are:

Test Type # Samps Optimal Rank Status Achievable CFP  Power Rating  @ 2F 3F 4F
   1:1    12 DCFP OK @ max = 1 .17647 Good .364 .732 .943

   1:2    12 DCFP OK @ max = 1 .00713 Good .142 .544 .892

   1:3    12 DCFP OK @ max = 1 .00037 Acceptable .059 .409 .843

   1:4    12 DCFP OK @ max = 1 .00002 Low .026 .310 .798

         It can be seen that at the maximum ranking (or any other fixed maximum rank), the lowest

achievable CFP occurs with the 1:4 test and increases as the m of the 1:m test decreases.   Power is

inversely related and is greatest with the 1:1 test and decreases with increasing  m, also as shown by

the change in ratings.  These outcomes do reflect the superiority of optimizing higher 1:m tests.

          Using these two calculator modes, the user can experiment with various inputs to find the

best overall test design from among these non-parametric  prediction limit test choices.  The 

narrative below provides greater detail on defining the appropriate inputs, interpreting outputs, and

how the calculator functions.

Introduction

The Optimal Rank Values Calculator (2006 Version) is a stand-alone software program
used for the design and evaluation of certain non-parametric prediction limit statistical tests. 
Written in Visual Basic 6, the program file "OptRank06.exe" has a  total size of about 460K and
should run on most Windows operating systems.  An initial version of this program was provided
with the 2004 draft of the Unified Guidance, and has since been updated.  The attachment to this
summary provides greater detail on calculator algorithms and performance.

The program was written and developed by Mike Gansecki, EPA Region 8.  Steve
Burkett, also of EPA Region 8, provided assistance in its formulation.   For any further questions
on the calculator, please contact Mike at gansecki.mike@epa.gov or at: 303-312-6150.

mailto:gansecki.mike@epa.gov
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Purpose of the Calculator

The Optimal Rank Values Calculator provides design information for certain 1:m non-
parametric future value prediction limits (PL) tests.  The calculator identifies the optimal
background maximal rank value for 1:1 to 1:4 PL tests which can meet a design cumulative false
positive error for a specific background sample size, the number of tests against that background,
and any limitations on the available maximal rank as inputs.   It also provides fractional power
estimates at 2, 3, and 4 F levels above a standard normal background for each 1:m test, and rates
power consistent with the Unified Guidance methodology. 

The calculator is intended to supplement information in the EPA RCRA document,
“Statistical Analysis of Ground Water Monitoring at RCRA Facilities– Unified Guidance”, 
currently under development as of 2009.   The Unified Guidance document covers six different
non-parametric prediction limit tests recommended for detection monitoring– 1:2, 1:3 , 1:4, and a
modified California plan future values tests, as well as 1:1 and 1:2 size 3 median tests.  The
calculator evaluates only the 1:2 through 1:4 future values guidance tests (the 1:1 test is included
since it follows a common algorithm and can serve for comparison purposes).  Particularly with
the higher 1:m tests, the optimal balance between meeting both a design cumulative false positive
error rate and sufficient power may only be achieved with lower background prediction limit
maximal ranks.  The modified California and median non-parametric guidance tests have
statistical characteristics which limit the likelihood of optimal maxima to the largest or 2  nd

largest rank value meeting both false positive/power criteria, and are sufficiently covered in
existing guidance tables.

Statistical Testing

RCRA groundwater monitoring regulations require statistical comparison of future
downgradient (compliance) well samples against background for a variety of constituents, to
determine if the downgradient monitoring well(s) indicate a release.  Generally, a statistically
significant increase above background is indicative of such a release.  The background data for a
given constituent may be obtained from upgradient wells, pooled or individual historical
compliance wells, depending on statistical characteristics as described in the Unified Guidance. 

Parametric and non-parametric prediction limits are among the statistical test options
which can be used for detection monitoring.  A prediction limit identifies some statistic from a
background data set used as the basis of comparison for future samples or sample statistics from
compliance monitoring well data.  Given that most comparison tests are intended to evaluate
increases, a one-way upper prediction limit is most frequently used.   For intrawell testing, this
can be a two-sample comparison, but is often extended as multiple comparison tests if data from
a number of compliance monitoring wells at different time intervals are tested against the same
background prediction limit.
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The value of the prediction limit is determined by a number of factors including the test
design, the background sample size, the number of tests against this background limit, and the
level of test confidence desired.  The prediction limit is derived solely from background data, and
it is initially assumed under the null hypothesis that compliance well data follow the same
pattern.  Prediction limit test outcomes are based on how a given number of  future well
compliance samples are expected to fall within this limit under background conditions. Certain
future sample data patterns are considered statistically significant indications of a release or
exceedance, while others falling within the upper prediction limit are considered “in-bounds”
(i.e., not significantly different from background)..

When conditions warrant, it may be necessary to apply non-parametric testing methods. 
Among the most powerful are 1:m prediction limit tests (the term 1:m or 1-of-m refers to the
formal use of repeat testing from 1 to m resamples at a monitoring well testing location).   In this
type of test, future downgradient samples (and repeats as necessary) are compared to some fixed
maximal value of the background data set used as a prediction limit.  For  a 1:2 prediction limit
test, both the initial sample and resample must exceed the prediction limit to be declared an
exceedance.  For a 1:4 test, 0, 1, 2 or 3  exceedances out of 4 are still considered “in-bounds”;
only 4:4 exceedances are considered significantly different from background.  While this may
seem excessively lenient from a regulatory perspective, the calculator is designed to provide
optimal comparison conditions for higher order 1:m tests  (i.e., lower maxima) which meet the
same overall cumulative false positive objective.  As will be seen, power actually increases for
higher level 1:m tests under the same input conditions when maximal values are optimized.

The virtue of prediction limits is that they are highly flexible and can generally be
adjusted to either meet or approximate exact confidence levels for a wide range of facility-
specific conditions.  While parametric prediction limits using 6-multiples can obtain exact
confidence levels, non-parametric prediction limits are based on fixed achievable false positive
error rates for a given test, the maximal value used as a prediction limit, background sample size
and other design factors.  Particularly with the use of this Optimal Rank Values Calculator, it is
possible to approximately meet the SWFPR objectives with non-parametric prediction limits  by
careful consideration of various design inputs including the level of the 1:m test. 

The Unified Guidance uses a statistical design process for detection monitoring at a
facility which incorporates the pre-determined target annual site-wide false positive rate
(SWFPR) and identifies minimum satisfactory power criteria (the ability to discriminate certain
increases above background for a single monitoring well-constituent test).   While the details of
this design process are too involved to be presented here, the following is a brief summary of
how calculator inputs would be defined by the design factors.

 To make effective use of prediction limit testing in detection monitoring site design, a
target individual test false positive rate and  cumulative false positive rate for comparisons to a
single background must be established.  These in turn, depend on the pre-selected overall facility-
wide false positive error rate (SWFPR) for some relevant time period.  The Unified Guidance
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recommends that a facility-wide false positive rate be applied to the total number of tests in a
given calendar year, and has suggested an SWFPR = .1 or 10%.  Two approaches can be used,
based on either an exact Binomial distribution formula for the probability of at least one or more
occurences given a single test error rate or the Bonferroni approximation to the first method.  The
Binomial approach is preferred, since it follows the approach in the Unified Guidance (March
2009).  The applications here are for non-parametric prediction limit tests, considering either
future values tested against a common constituent background data set (interwell) or tested
against  historical data from the same well (intrawell).

The total number g of sitewide annual independent statistical tests which contribute to the
overall SWFPR must first be identified.  g is the product of the number of compliance wells [w],
the number of valid monitoring constituents [c], and the number of required evaluations per year

E[n ]:

Eg =  w × c × n

test The individual design false positive error rate for a single test (" )  is then:

test"  = 1 -(1-SWFPR) Equation 1.1/ g

test cumOnce the single test rate "  is known, the cumulative false positive "  for any of r tests
can be calculated by reversing the equation:

cum test"  = 1 -(1- " ) Equation 2. r

Using a combination of these two equations will allow for the calculation of the
cumulative false positive error rate for the two most important testing comparisons– interwell
and intrawell testing.

Because of the nature of the mathematical theory behind non-parametric prediction limits,
tests are evaluated on a single background constituent sample size, considering the number of
tests against this background.  To properly utilize the calculator, the target cumulative false
positive error rate must first be established for either interwell or intrawell comparisons.

In interwell testing, it is most common to evaluate all compliance well data tests against a
single common background.   In this event, the effective number of tests is then w the number of

E Ecompliance wells times n  the number of evaluations per year or r = w × n .   The cumulative

cumfalse positive rate "  for this number of tests given the single test false positive rate can be
calculated using Equation 2.   An alternate way of calculating the cumulative interwell error rate
is to apportion the full SWFPR = " = .1 equally to the c constituents:

cum"  = 1 -(1-SWFPR) Equation 3.1 / c
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The results using either Equations 2 or 3 should be identical.

For intrawell comparisons, future data for each compliance well are tested against the

Esingle historical background sample set from that well.   In that case, there are only r = n  tests.  

testEquation 2 can be used with the single test false positive error rate "  to obtain the target
cumulative error:

cumThe Optimal Rank Values Calculator software uses n, r and "  as inputs to identify
optimal non-parametric rank values (provided as inverse rankings, i.e., the maximum rank of a

cumbackground sample = 1) which can attain single constituent cumulative error rates (" ) for 1:1
through 1:4 tests of future values.  The calculator interface identifies the design cumulative false

cumpositive error rate for a single background prediction limit as DCFP, instead of " .  Power is
independently estimated once the optimal ranks have been determined.

It is also possible to utilize the Bonferroni approximation to the Binomial formulas, since

Ethe error rates are nearly linear.   The SWFPR can be divided by g =  w × c × n  or .1/g to obtain

cumthe single test false positive error rate.   A cumulative error rate "  can be obtained by

cum testmultipling the single test error rate by r or: "  = r × " .  Since the Binomial approach is exact,
it is preferred for calculator use.   However, the differences using the Bonferroni approximation
are generally very minor.

CALCULATOR OPERATION

Figure 1 provides an reasonable approximation of what is seen in the calculator window
screen.  There are three blocks or groups: Input values, Status & Power outputs, and Additional
Information outputs.  Five function keys are provided–  Calculate, Print, Reset, Exit and “About
this calculator.”  

Input Values

Four related inputs must be identified for the calculator to function.  Each input box is
described below:

Design Cumulative False Positive Error (DCFP)–  As described above, this rate is the

cumdesign cumulative error false positive error (" ) for r tests against a background of size
n.    The program only accepts fractional values  from > 0 to 1.0, and an error message
will result if other values are entered.  For example, if 8 different constituents with
different size background databases will be tested interwell, the single-constituent error
rate is the overall .1 cumulative error partitioned to the c = 8 constituents (.01308) or
divided by 8 = .0125 using the Bonferroni approximation. This error is cumulative, since
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it must account for the number of individual comparison tests to this background,
described below. 

Background sample size (N) –   This is the background sample size defined for the r tests
at the DCFP rate, and can represent pooled up- and downgradient well or intrawell data,
depending on their statistical characteristics.  The program only accepts positive integers
of 2 or greater.  Input values as high as 1000 have been used without causing program
failure; however the expected  range is from 4 to 300.  If a site can aggregate multiple
well upgradient or other data, larger background sample sizes are possible.  Typical
single-well background sample sizes are more like 4 to 25.

Number of comparison (tests) to the same background (r)–.  The number of comparison
tests is against a single background prediction limit in a specified time period.  Repeat
test samples are not included in this value, and are accounted for in the program as
individual 1:m results.  The program accepts integer values of 1 or greater.  Values as
high as 1000 have been used without causing the program to terminate; however, typical
ranges are from 1 to 500   If sample constituent data from 20 downgradient monitoring
wells will be compared to this single background prediction limit twice a year, the
number of annual comparison (tests) is r = 20 × 2 = 40.  If each downgradient well set
were compared to its own historical background (intrawell comparisons), the number of
comparisons would then be r = 2 (the cumulative false positive DCFP and background
sample size n would also need to be adjusted).  

Minimum allowable rank value (j)–   This is the lowest allowable maximal value of the
background data set which can be used for comparison.  The calculator uses inverse
ranks, i.e., the maximum value j =1, the 2  highest value j = 2, etc.   The program sets thend

lowest rank by default to the smallest background value (n), but can be adjusted to some
other integer value from 1 to n-1.   This could occur if the non-parametric background
data contain non-detect values.  If a background sample size of 20 had 75% non-detects, 
j = 5 would be entered as the lowest maximum allowable inverse rank value

The calculator can be operated in other than an optimizing mode to provide exact
cumulative false positive error rates for a fixed maximal value of a background sample
set for the four 1:m tests.  This is done by setting the DCFP to 1.0 and identifying the
desired minimum allowable inverse  rank value j.

While the calculator is designed to handle typical inputs even from a very large RCRA
facility, there are upper performance limits.  A run-time error will occur for certain combinations
of large DCFP, n and r values.  The Attachment provides a graph identifying levels for the three
inputs which can result in an run-time error.  Calculator operation times are typically only a few
seconds, but can be longer if n and r are large (e.g. > 500).
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Calculate

   Print

   Reset

   Exit

   About this calculator

Function Keys

 Clicking this button initiates the program when all four valid inputs
are entered.  The Return key will also perform this function as well
as hitting [alt] and C keys.  The program calculates successive
maximal values (beginning with the absolute maximum  j =1) for a
given sample size and number of comparisons up to the background
sample size or specified maximum limit until the optimal
cumulative false positive for a given 1:m test is reached.   The
optimum is the lowest maximal value which still meets the DCFP
cumulative false positive input.  If the 1  maximal value exceeds thest

DCFP for a test type, this is reported.

In program calculations, each of the four 1:m tests is evaluated in
turn.  After all 1:m test optimal maxima are identified, the program
then calculates relative power based on a standard normal
distribution for background and normal future samples at 2, 3 & 4
sigma levels).  Finally, the program identifies a power rating of
"Low", "Acceptable" or "Good" power depending on whether
none, one or both of the EPA Reference power criteria are met. 
All output value boxes are filled.

Clicking this button or [alt]- P keys sends a copy of the overall
Windows screen output to a local or line printer.

Clicking this button or [alt]- R keys will clear all of the input and
output boxes for new inputs and calculation.  Alternatively, if it
desired to change only a single input, simply re-enter the desired
input value and click on the Calculate button or Enter key.

Clicking this button or [alt]- x keys closes the Visual Basic program.

Clicking this button or [alt]- A keys provides a summary of
main calculator features, input information and program
development.

Outputs– Status & Power

For a set of input conditions, the information under "DCFP Status @ Opt. Maximum"
identifies whether or not the design cumulative false positive was exceeded or is satisfactory
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(OK).  It identifies the inverse rank maximal value for each 1:m test which is optimal in meeting
the cumulative false positive (unless exceeded at the maximum j = 1).

The following example illustrates the use of the calculator in optimizing mode.  Assume 
c = 10 monitoring constituents; w = 10 compliance wells at a facility to be tested semi-annually 

E(n  = 2), with 65 pooled background samples available for interwell testing; and an overall
SWFPR = .1.  Then r = 10 ×2 = 20 and DCFP = 1-(1-SWFPR)  = .0105.   Further assume that1/c

all background data are above detection.

In Figure 1,  the following input conditions are shown: the DCFP cumulative false
positive error = .0105; background sample size = 65; number of comparisons = 20; with no
constraints on the lowest rank (default minimal allowable rank value = 65).  For the 1:1 test, the
cumulative false positive status is "DCFP exceeded at max = 1".  For the 1:2 test, the cumulative
false positive status is "DCFP OK at max = 1".  For the 1:3 test, the 4   highest value is optimal,th

while the 8  highest value is optimal for the 1:4 test.th

Unified Guidance power ratings for each of the tests are provided in the last column.  
Although rated “Good”,  the 1:1 test power results are moot since this test significantly exceeds
the design DCFP (an achievable cumulative false positive of .235 using the maximum rank). 
The rating is “Acceptable” for the 1:2 test at the 1  maximum, since the 4F EPA Referencest

Criterion shown at the bottom of the calculator was equaled or exceeded.  The power ratings for
both the 1:3 and 1:4 tests at their respective optimal maximal ranks are "Good", since both the 3
& 4 F criteria were exceeded.  These category ratings follow that of the 2009 draft Unified
Guidance.  The reference rating values shown at the bottom of the calculator outputs are based on
an approximation methodology for non-central t-distribution normal power evaluations used in
the calculator.   A more detailed explanation of this methodology is found in the Attachment.

Additional Information

The first column after the 1:m test listings is identified as the “# of Samps”.  These
represent the expected number of total comparison samples including repeats under background
conditions for the four 1:m test types.   Since the input value for the number of single comparison
tests was 20, this would be expected number as well for the 1:1 test.  The same (rounded) number
of expected samples is shown for the 1:2 test.  For the 1:3 test, 21 samples (including repeats)
would be expected and 23 for the 1:4 test type.  The estimates are based on the individual P
values in the next column.  For the 1:4 test, the 8  maximum value out of 65 would have a singleth

comparison confidence level of .8846 or a 1 - .8846 = .1154 probability of being exceeded by
future samples from background.  The individual P value is calculated as IndP = (n-j +.5)/n,
where n is the background sample size and j is the optimal maximal rank.   The expected
numbers of samples (rounded to the nearest integer) for r comparisons and 1:m tests are
calculated as:  
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Achievable cumulative false positive error rates given the input conditions and optimal
maximal rank value for each 1:m test type are found in the next column of  Figure 1.  The
software program uses double-precision numbers in calculating these output values to five
decimal places. 

The final three columns provide the estimated fractional power at 2, 3, and 4 F mean
levels above background for each of the four 1:m tests, based on normal distribution
assumptions.   As can be noted, the 1:4 test is the most powerful under optimal rank conditions. 
Power values are generated from an approximation program based on Davis & McNichols' basic
equation for parametric normal prediction limit tests.  More complete explanations for both the
algorithm used to calculate the 1:m cumulative false positives and the power approximations are
found in the attachment to this summary.

Benefits of the Calculator

The heart of the calculator program is the algorithm for calculating the optimal maximal
cumulative false positives.  In the 2009 Unified Guidance, a substantial number of appendix
tables (Appendix D, Tables 19-19 to 19-24) are needed  to cover only the absolute and second
highest maximum values used in these non-parametric tests.  It is impractical to generate even
more tables for lower maxima; yet especially for higher level 1:m tests, the optimal values
calculated with this program suggest much lower maxima under certain conditions.  As the above
example demonstrates, the 8  highest maximal value was optimal for the 1:4 test.  Particularlyth

where background sample sizes are very large (e.g., n > 100), one might expect the 5 , 10 , 17th th th

or even the 20  highest maximum to be the optimal maximum for the higher level 1:m teststh

under certain input conditions.

If one wished to generate cumulative false positive error and power information for a
given background sample size and the number of comparison tests at a fixed maximal value (e.g.,
the highest background value), the calculator allows for this option.  By specifying the
cumulative false positive input DCFP = 1 and the minimum detected value  j, and varying the
other two variables, the calculator outputs will provide the achievable cumulative false positive
error and power for each of the four tests at that maximal rank.  Using the example background
sample size and number of comparison tests from Figure 1 with the DCFP set to 1 and the
minimal rank value j =1, the results are shown in Figure 2.  At the maximum value used as a
prediction limit, the 1:4 test demonstrates the lowest achievable cumulative false positive error,
but also the lowest power.   This example illustrates the value in optimizing the maximal rank
value used as a prediction limit.  Higher order 1:m tests are less powerful at a given fixed rank
value, but more powerful tests when optimized.



 For example, Gibbons, Robert D., Statistical Methods for Groundwater Monitoring, John Wiley &
1

Sons, Inc., 1994, Tables 2-5 through 2-12, pp.52-67.   Since the values are given as confidence

probabilities of lying below a maximum value, simply subtract 1- cumulative false positive of the

Calculator values.
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The cumulative false positive error values based on the calculator algorithm have been
checked against existing tables in statistical texts  and the guidance, and are accurate to four or1

five significant places.  While the fractional power estimates are approximate, they are accurate
enough to closely match the ratings provided in the guidance.  By providing the actual power
fractional estimates, more latitude is available should these reference criteria be modified. 
Fractional power levels also allow for determining effect-size power.  The attachment describes a
comparison of power ratings and estimates using the calculator with the 2004 draftUnified
Guidance tables and Monte Carlo data, and one approach to calculating specific effect size
power.

Using this optimizing calculator with typical input variable conditions, it can be more
easily seen that higher level 1:m tests provide greater relative power with no loss of false positive
control.  Regulatory agencies may find it easier to allow use of these higher level type tests.  The
calculator also offers an easy way to evaluate 1:m non-parametric prediction limit tests in overall
detection monitoring system design.

Figures and Attachment
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Figure 1.  Window Screen for Optimal Rank Calculator Program
(Optimization Mode Example)

Optimal Rank Values Calculator

Outputs

Input Values Here: Status & Power

Design Cum. False Positive Error [DCFP]: .0105 Test DCFP Status @ Opt. Maximum Power Rating

Background sample size [n]: 65 1:1 DCFP exceeded at max = 1 Good

Number of comparisons to same bkg.[r]: 20 1:2 DCFP OK at maximum = 1 Acceptable

Minimum allowable rank value [j] *: 65 1:3 DCFP OK at maximum = 4 Good

* The default value is the lowest allowable inverse

rank from the  Background Sample Size above.  You

may overwrite this default with another rank value.

1:4 DCFP OK at maximum = 8 Good

Additional Information

Test
# of

Samp Ind P
Achievable

CFP Error

Power @

Calculate Print Reset Exit 2 Sig 3 Sig 4 Sig

1:1 20 .9923 .23529 .344 .716 .938

1:2 20 .9923 .00883 .126 .519 .881

About this calculator 1:3 21 .9462 .00787 .286 .769 .973

1:4 23 .8846 .00755 .392 .860 .989

EPA Reference Criteria: > .539 > .814
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Figure 2.  Window Screen for Optimal Rank Calculator Program
(Fixed Rank Mode Example)

Optimal Rank Values Calculator

Outputs

Input Values Here: Status & Power

Design Cum. False Positive Error [DCFP]: 1 Test DCFP Status @ Opt. Maximum Power Rating

Background sample size [n]: 65 1:1 DCFP OK at maximum =1 Good

Number of comparisons to same bkg.[r]: 20 1:2 DCFP OK at maximum = 1 Acceptable

Minimum allowable rank value [j] *: 1 1:3 DCFP OK at maximum = 1 Acceptable

* The default value is the lowest allowable inverse

rank from the  Background Sample Size above.  You

may overwrite this default with another rank value.

1:4 DCFP OK at maximum = 1 Low

Additional Information

Test
# of

Samp Ind P
Achievable

CFP Error

Power @

Calculate Print Reset Exit 2 Sig 3 Sig 4 Sig

1:1 20 .9923 .23529 .344 .716 .938

1:2 20 .9923 .00883 .126 .519 .881

About this calculator 1:3 21 .9923 .00040 .049 .381 .829

1:4 23 .9923 .00002 .020 .283 .780

EPA Reference Criteria: > .539 > .814



Gibbons, Robert D., Statistical Methods for Groundwater Monitoring, John Wiley & Sons, 1994,
2

p.37, Equation 2.2 

Attachment - 1 

ATTACHMENT
 Development of 'OPTIMAL RANK VALUES CALCULATOR' Program 

 for 1-of-m Non-Parametric Prediction Limit Tests— 2006 Version
May 18, 2007

Introduction

In developing this software program to balance false positives and negatives utilizing 1-
of-m non-parametric tests, it was necessary to evaluate the cumulative false positive level for
various combinations of input 1:m test type, background sample size, the number of comparison
tests, and the maximum value used for comparison.  The cumulative false positive is evaluated
for individual constituents (against a single background database).   The initial formula used was
a variant of the multivariate hypergeometric distribution described by Hall, Prarie & Motlagh
(1975) and Chou & Owen (1986) provided in Gibbon’s 1994 book .   Using slightly different2

notation as m the number comparisons within the 1:m test type, n sample size, and r the number
of comparison tests, the cumulative confidence level, ( is given as follows:

Equation (2.2)

where refers to the number of combinations of m things taken j at a time.  As presented, the

formula evaluated the maximum sample value only.   In subsequent discussions, Gibbons
indicated that the number of terms increased roughly as a factor of m , making exact calculationsr

of larger numbers of comparison tests impractical.  But in working with small n and r
applications, it was found that only (m-1)r+1 distinct terms were needed within a single
summation for a solution, a much more tractable problem.  Further investigations showed that (
could be calculated as a single summation utilizing four major terms (A-D) for any maximum
value MX (where the maximum value =1 and lesser maxima in inverse order):

with D  a constant for any given combination of m. N, r, and a maximum value MX. Each of the
four terms is defined below:
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D Term:

As an example, for MX=2 and m=3, .

B Term

B is an expansion of the series (MX+i)!, as i varies from 0 to (m-1)r.  It is defined as:

If MX=2, then the series of terms for i = 0 to 4 is: 1, 2, 6, 24..... etc.

C Term

In Equation 2.2 above, the upper term mr+n-1 in the combination

corresponds more generally to the denominator C defined as follows: if L = mr+n-MX, then:

 or 

For k=3, n=5, m=2, and MX=1, then if L = 10, for the first four terms i = 0 to 4,

iC  = 1, 10, 10C9, 10 C9C8, or 1, 10, 90, 720, ...etc.

A Term

The A terms are coefficients and the most difficult to mathematically formulate. They are
variants of a binomial/polynomial expansion and the (m-1)r+1 terms are defined by the equation
[(1+a) -a ]  as follows:m m r

Test Type Expansion Number of Terms 
1:1 1 1r

1:2 (1 +2a) r+1r

1:3 (1+3a+3a ) 2r+12 r

1:4 (1+4a+6a +4a ) 3r+12 3 r



Davis, Charles B., and McNichols, Roger J., “Simultaneous Nonparametric Prediction Limits”,
3

Technometrics, May 1999 pp. 89 - 101.
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Setting a=1 results in the exact coefficients for each of the (m-1)r+1 terms. As an
example of a 1:2 test with r=5 comparison tests, the six coefficients from the  (1 +2a)  expansion5

would be: 1, 10, 40, 80, 80, & 32.  Computationally, the coefficients are best generated using
recursive programming techniques.

The overall formula for generating ( is described in the following equation.  For the1:1
test case, only the D coefficient is calculated, since there is only a single summation term = 1:

iwhere a(m,r)  are the coefficients as described above.

Programming Considerations

Certain software design features were felt important for program applications in
calculating the cumulative false positive for the various 1-of-m tests.  Since the number of
comparison tests r is to a single background sample set, the program should be able to calculate
using inputs of up to 200-500 comparison tests and background sample sizes as reasonable
maxima.

Secondly, the program should perform fairly quickly, particularly for the 1:4 test
involving the greatest number of computational terms. The program should be able to assess
maximal values lower than the simple sample maximum or 2  largest, particularly for highernd

order 1:3 or 1:4 tests.

A final desirable feature was that the recursive program should be as stable as possible
under the likely input assumptions of r, MX, and n.  A recent paper by Davis and McNichols3

provided a comprehensive presentation of 1-of m and other non-parametric prediction limit tests
including a simplified algorithm for calculating the cumulative false positive error.  While an
exceptionally quick program, the use of (+) (-) terms has its own problems of regions of
instability or chaotic behavior.  Their paper suggests that this algorithm works best in ranges
where r < 3n.  Not all maximum values could be accurately calculated even within this range.

The ‘Optimal Rank Values Calculator’ program was developed following the logic of the
above ( derivation, although calculations are developed in a recursive manner for all four
components.  The program was initially written in DOS-BASIC, and then converted to a Visual
Basic 6.0 format. In program terms, certain variable name differences occur.  The number of
comparisons is entered as “R” versus “r”, N remains the sample size, MX the inverse maximum
value rank.  Instead of “m” in 1:m comparisons within a given test type, the program uses “Q”.  
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‘Optimal Rank Calculator’ Program Cumulative False Positive Error and Optimization

As shown on the flow diagram in Figure 1, the ‘Optimal Rank Values Calculator’
program  evaluates each of the four 1-of-Q test situations to find the lowest achievable 
maximum value of the sample N data set which meets a pre-specified or design input cumulative
false positive error limit.  This design cumulative error rate is based on a single-constituent,
single background size comparison for R tests.  As shown on the diagram, inputs are background
sample size (N), the number of comparison tests to a single background sample set (R), a pre-
specified design cumulative false positive error (AL), and whether a lower bound maximum limit
is placed on the search.

Beginning with the 1:1 test comparison in Figure 1, Q =1 and the initial maximum value
is set to 1.  The dark shaded box defining the “cum(")” is the heart of the program and is shown
in detail below in Figure 2.   The program then evaluates whether the calculated cum(") is

cgreater  than the pre-specified AL or " .  If not, the second maximum is evaluated, etc.  If
maxima greater than 1 are found to exceed AL, the previous maximum and cum(") are used as
the optimum fit for that 1:Q test.   If the maximum value exceeds the cumulative false positive
level, the program reports this as "DCFP exceeded at max = 1".

The program also evaluates whether any given maximal rank exceeds a pre-specified
lower allowable rank value and reports the values at that rank, indicating that  it was constrained
by a lower limit.   For increased efficiency, the initial maximal value for a 1:Q test is set at the
previous optimal rank for the Q-1 test as indicated in a Figure 1 footnote, since the cumulative
false positive is always lower for a given set of program inputs at a higher 1:Q test.  Power
(described in the next section) is evaluated for all 1:Q tests at the input N and the optimal MX for
Q = 1 to 4. After assessing the Q=4 condition, the program prints all of the cum("), optimal
maxima, and power information.

Figure 2 is a flow diagram of that portion of the calculator program which calculates the
cumulative false positive error for single inputs of N, R, and MX.  The C denominator term
mentioned above is calculated as L(Q) for a given 1:Q test.  The program works with an F(i, j)
matrix of i rows and j columns.  The number of rows equals Q and the number of columns varies
from Q to RP(Q) = (Q-1)R+1.  Next, the D term is calculated for a given Q, with a variable
ASUM(Q) set to zero.  If Q=1, the recursive portion of the program is skipped and ASUM(1)=1. 

1:1Then (  = P(1) = D(1)CASUM(1).  The cumulative error ER(Q)= 1-P(Q).  For 1:2 through 1:4
tests, the full F[Q, (Q-1)R+1] matrix is first set to all zeros.  i is then used as a counter for R
steps through the recursion process.  At i = 1, initial terms are provided in the first row [F(1, 1) to
F(1, Q)] which correspond to AB/C elements described above.  As an example for Q=3, initial
conditions are F(1, 1)=1, F(1, 2)=3MX/L, and F(1, 3)=[3MXC(MX+1)]/[LC(L-1)].

In order to avoid extensive unnecessary multiplications against zero and increase program
speed, two additional variables IP(Q) and IP2(Q) are defined at each step from i to R.  Gradually,
the Q x IP(*) F-matrix expands with each successive i until it reaches Q x (Q-1)R+1 rows and
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columns at the Rth iteration.  Within each i iteration, a second row is defined by a multiplier
against the first row contents, with additional row multipliers for each Q against the first row. 
The numerical multipliers correspond to the [(1+a) -a  ]  coefficients in the formula describedm m r

above..

Once the Qth row is calculated, the program then sums the first to the Qth row for each
column.  The summed values are reentered into the first row of the F(i,  j) matrix and the process
repeated R times.   When i = R, the summed column values are then summed across the row to
generate a total value as ASUM(Q).  This value is then multiplied against D(Q) to obtain the
cumulative confidence level P(Q), and the error ER(Q).  In the full ‘Optimal Rank Values

cCalculator’ program, ER(Q) = cum(" ) for each 1:Q test type.

Figure 3 provides direct calculations for the program algorithm using an example with
small input values.   The figures better illustrate the recursive nature of the program. The
cumulative error for 1:1 to 1:4 tests is obtained from inputs N=5, R=3, and MX=2.  In the
example for the 1:2 test, where D(2)=2/11, RP(2)=4, and L(2)=9, the full summary equation
would be:

   =  

The program design can result in fairly long running times when R and N are large,
although typical applications require only a few seconds. Given the present software structure,
there are upper input limits beyond which an overflow error will occur.  The graph below
provides limits for DCFP, N and R inputs.  N & R values to the right and above a given DCFP
curve will produce an overflow error (e.g., at " = .1, combinations of N and R above 300-500
may produce an error).   However, a realistic application of this program would utilize a smaller
DCFP, with considerably higher N and R input overflow limits.



Davis, Charles B. & McNichols, Roger J., "One-Sided Intervals for at Least p of m Observations
4

From a Normal Population on Each of r Future Occasions", Technometrics, August 1987, pp. 359-

370
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Cumulative false positive program  results were checked against the eight pages of
tabular values in Gibbon’s text containing tables for 1:1 through 1:4 tests up to N=100 and
R=100 using the maximum or 2  largest value.  The present algorithm was correct to fournd

decimal places for all inputs checked.

‘Optimal Rank Values Calculator’ Power Evaluations

Once the program has identified the appropriate inverse maxima for each of the 1:m tests,
the program evaluates power based on normal distribution data assumptions.  Fractional power is
estimated at  2, 3, & 4F standard deviation population levels above a reference normal N(0,1)
background population.  These results are compared with Unified Guidance reference criteria at 3
and 4 F.

The initial version of this program (September 2004, Version 1) utilized regression
equations of Monte Carlo simulation power data.   While reasonable approximations, it was
discovered that the fractional power estimates did not closely match the available draft Unified
Guidance transition cutoff levels (between categorical power ratings for the maximum and 2nd

maximum).

The current program version follows the approach in the September 2004 draft Unified
Guidance--  ".... a simple modification to the numerical algorithms presented in Davis and
McNichols (1987)  was used to compute power directly."  The calculator uses a simple4

modification of their basic parametric equation, converted to fixed maximal values
approximating a normal distribution for non-parametric 1:m tests.  Davis and McNichols derived
the equation below for parametric normal prediction limits containing the following inputs: a
background sample size n, r successive comparisons,  p-of-m type tests and some K-factor based
on the background statistics of the form Gx + KAs:

.  While this equation appears inordinately complex, all but the non-central T-function
can be easily handled by routine statistical software or even simpler computations.  The essence
of the equation is to integrate from 0 to 1 for the non-central T with appropriate inputs, the
cumulative Beta distribution  I(C, a, b) multiplied by r and taken to the r-1 exponent, and the Beta
pdf (the last ratio terms in the equation).  For 1:m tests, the two Beta functions reduce to simple
algebraic computations.  The standard normal distribution, M, was also readily estimated with



Hald, Anders, Statistical Theory with Engineering Applications, John Wiley & Sons, Inc., 1952,
5

Chapter 15, pp. 391-393
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common programming techniques.  As a further simplification, r = 1 for all cases, following the
2004 and current 2009 guidance approach of evaluating power based on a single future test.

In the present program, a fairly large number of v iterations for the probability range (0,1)
are first generated in an initial column as (i- .5) /1000 for i from 1 to 1000.   The inverse normal
distribution function [M  (L)] then assigns Z-values to these probabilities.  The Beta pdfs and-1

cdfs are then calculated for the same range and stored based on the appropriate input parameters
L, p, and m.   Calculated  rI  results sum to 1.0.r - 1

The non-central T poses the most difficult computation problem, since it must be assessed
at various /nA[Z(L) + )/F] values (with Z(v) varying from L =0 to 1) against a factor comparable
to  /nAK.  To keep computer running time low and easily understood, the Hald approximating
equation was used for the non-central T  in this algorithm.   Hald  found that for reasonably low5

sample size, the non-central T  probability can be approximated by the standard normal
distribution utilizing a central-t distribution function as follows:

where B(1-$) is the fractional power probability, N-1 is the degrees of freedom, t is a central t at
N-1 degrees of freedom and 1-" confidence, M*** is the standard normal distribution probability
value, and 8 is a non-central-T parameter specific to the type of comparisons made.   The
approximating equation is quite accurate for assessing most power situations, but least so at )=0
or very low positive ).  The Hald normality assumption works adequately in most situations for
sample sizes of n > 6-8. 

Since the Optimal Rank Values Calculator program generates fixed maximal values from
a given background sample size, these must first be converted to a probability, which can then be
converted to a Z-value, assuming that both the background and power distributions are normal. 
In order to identify the appropriate comparison value for the non-central T statistic, the following

maxapproach was used.   Given some maximal rank of  x  as the y-th largest value from a
background sample of size n used as the prediction limit, the rank is first converted to a
probability of occurrence p given some fractional (0 - 1) value f as follows:
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This probability is then converted to a Z- value using the inverse normal function.  After
some experimentation, it was found that the best approximation was f = 0, or p = (y - .5)/n.   The
corresponding non-parametric Hald t-comparison value for /nK in the Davis & McNichols
Equation 1 is /nCZ(p).   The lambda (8) non-central t parameters are /nA[Z(L) + )/F], with L
varying from 0 to 1.

The resulting 1000 probability values for the non-central T are then multiplied against the
respective Beta pdf and rI  (cdf) values for each probability from 0 to 1.   The numericalr - 1

fractional probability is then the simple integration achieved by summing these resultant products
times the single (1/1000) delta integration value.   The same algorithm is followed varying F
power levels from 2 to 4 for each 1:m test.

While specific fractional power values for the non-parametric tests were not available in
the guidance for comparison, the effectiveness of these two calculator power approaches
(Version 1  regression information and the more recent approximation of the Davis & McNichols
equation) was assessed in two ways.  The first assessment compares transition cutoff levels in the
September 2004 guidance appendix Tables 13-19 through 13-24.  The second approach is to
compare the current Optimal Rank calculator outputs with the earlier Monte Carlo data.

In the 2004 and more recent 2009 Unified Guidance, power is assessed at 3F and 4F,
utilizing a one-way upper 99% normal 1:1 prediction interval test based on a sample size n=10 as
the reference power curve.  If fractional test power at 4F lies below the reference value (.815),
power is rated as "Low".  If above, the rating is "Acceptable".  If the 3F test power lies above
.541 as well, then the rating is "Good".  Guidance tables identify these three categories
respectively as plain text, italicized, or bolded; no actual fractional power is provided.   To
maintain consistency in comparisons, the EPA reference test criteria were calculated as .539 at
3F and .814 for 4F using a parametric normal power approximation algorithm similar to that in
the Optimal Rank Values Calculator program.   The latter reference values have been used in the
two calculator versions to assess categorical power ratings.  The table below provides the
background sample size transition cutoff level comparisons for 1:2 through 1:4 non-parametric
tests:

Comparison of Background Sample Size Power Rating Transition Cutoff Levels

Test
Type

Sigma
Level(s)

Maximum Value 2  Maximumnd

UG ORC-2004 ORC-2006 UG ORC-2004 ORC-2006

1:2 3&4F
4F

61-70

121-140

77-78

160-161

57-58

142-143

161-180

> 200

170-171

>200

172-173

>200

1:3 3&4F
4F

31-35

71-80

39-40

92-93

29-30

74-75

81-90

>200

88-89

>200

86-87

>200

1:4 3&4F
4F

21-25

41-50

25-26

62-63

19-20

49-50

51-60

141-160

57-58

143-144

56-57

158-159
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"ORC-2004" refers to the initial Optimal Rank Calculator version using power regression
data and the second "ORC-2006" the more recent program using the Hald non-central t
approximation.   The UG transition levels span somewhat larger ranges, since the guidance tables
provided limited background sample size inputs. With the Optimal Rank Calculator programs,  it
was possible to identify the transition ranges to a difference of one sample size.
   

 Bolded values indicate where the calculator programs differed from the guidance ranges
by more than a single sample size.  While both calculator programs worked well for the 2nd

maximum, the results differed for the maximum value, especially for the 1:2 test.  The recent
ORC-2006 algorithm more closely approximates the guidance levels, which were generated with
a formal non-central T program.  None of the latter transition ranges differ more than 1-3 sample
size values from the Unified Guidance ranges.

The second comparison is to the original Monte Carlo data.   The earlier calculator
version regression results are less accurate and not provided here.   Monte Carlo simulations
were used to generate power results at 2, 3 and 4F levels for 1:1 through 1:4 prediction limit tests
based on fixed background ranks.   Background samples were generated at various n from 6 to
199.   Maximal (inverse) ranksranged from 1 to 4 for smaller background sizes to 1 to12 for
larger n.   A total of 1392 fractional power values were generated under these test conditions.  
The Optimal Rank calculator was then used to generate the corresponding fractional power levels
at the same input conditions.  The table below provides basic statistics for differences between
the calculator and Monte Carlo values.   Both aggregate statistics and those for the 1  maximumst

compared to the remaining ranks is provided:

Comparison of OptRankCalc and Monte Carlo Power Data
(Difference of OptRank - MC)

Statistic Categories

Aggregate 1  Maximum Remaining Maxst

N
Mean, Gx
Median
Std. Dev

Minimum
Maximum

% < .05
% < .025
% < .01

1392
-.00265

0
.0122
-.067
.041

98.7
93.6
82.0

192
-.0187
-.018
.0218
-.067
.018

90.6
57.3

--

1200
-.00008

.001
.00698
-.043
.041

100.0
99.4
89.4

With the exception of the absolute maximum rank, the algorithm used in the Optimal
Rank Calculator closely tracks the Monte Carlo power data for rank values as low as the12th



Attachment - 10 

highest.  Almost 90% of the algorithm values lie within + .01 power units.   For most design
conditions, the calculator power results appears quite adequate.   As noted in the first comparison
with transition cutoff levels, the 2006 calculator power algorithm is still somewhat inexact at the
maximum rank.   A further evaluation of the 192 data points for the maximum value showed that
at 4F, the algorithm estimate of differences was quite close to Monte Carlo results (Gx = .0033; s =
.0094).   However, the 1  rank estimates were low at both 2 and 3F  (Gx = -.03; s = .017).  Thisst

may somewhat affect interpretations using the 1:2 test at the maximum rank (since the 1:1 test
isn't usually applicable, and 1:3 or 1:4 tests generally are optimal at lower ranks).   Overall, these
tabular results confirm the accuracy of calculator power estimates for all other background value
ranks.

 Since EPA power comparisons are only relative to a standard normal prediction interval
in specified power ranges, the degree of accuracy at extremely high or low power isn’t
particularly critical.  Background or downgradient well distributions other than the normal could
change the power outcomes, but the present effort and EPA guidance were primarily intended to
establish an understandable, systematic and repeatable power evaluation.  Using the calculator
avoids the need to run additional Monte Carlo simulations for these types of thoroughly-
evaluated 1:m non-parametric prediction interval tests.

Using the calculator information, it is possible to generate specific effect size power
estimates based on the fractional power outputs at ) = 0, 2, 3 & 4F for each 1:m test.  For a

SEspecific effect size: )  = (G - Gx)/s at some mean level G above a sample background with
statistics Gx and s, either the power values can be graphed against ) and the power estimated by
eye, or linearly transformed and regressed (such as a logarithmic transformation:
log{[1/fractional power]- 1} versus )).  The effect size power can then be estimated from the

SEregression equation at ) .  Results will only be approximate, and the caveats discussed above
for the maximum rank need to be kept in mind.

Figures 



Set Q=1
For 1 to 4 Test Types

No Yes

STOP
Yes

Set Max =11

If Max > 1 Use previous
cum " at Max -1

Q=Q+1

No 1:Q " exceeds at
given Max

Yes

Max =Max +1

Evaluate Power at 2, 3 & 4 F

cDefine 1:Q cum(") at N, R,  " , & Max

FIGURE 1.  FLOW DIAGRAM FOR ‘Optimal Rank Values Calculator’ PROGRAM

     

                           

 For increased efficiency, initial Max(Q) set at previous Max(Q-1)1

INPUTS:
Sample size N

cCumulative Constituent DCFP, "
Comparison Tests to Single Bkg, R

Maximum Limit, if any

ccum " <  " ?

Q > 4?

No
PRINT OUTPUTS

cum ", Max & Power 

for all 1:Q Tests

Max >Limit?



N

Y

ASUM(1)=1

N

Y

FIGURE 2

FLOW DIAGRAM for 1:Q NPM CUMULATIVE FALSE POSITIVE "  (Q =1 to 4)

 

        

       

          
                

         
           INPUTS:

             N, Sample Size

          R, No. Comparisons,

 MX, Maximum Value

ASUM(Q)=0

 L(Q)=QCR+N-M X

 RP(Q)=(Q-1)CR+1

D(Q) = N/(N+QCR)

if MX >1 then  for j = 2 to MX:

 D(Q)=D(Q)C(N-j+1)/(N+QCR-j+1)

for i = 1 to Q; j = 1 to RP(Q)

Set F(i, j) = 0

Set i = 1

 F(1,1)=1: F(1,2)= QCMX/L(Q)

for Q=3 & 4, F(1,3)=  3C(Q-2)MXC(MX+1)

                            L(Q)C(L(Q)-1)

for Q=4, F(1,4) =4CM XC(MX+1)C(MX+2)

                       L(Q)C(L(Q)-1)C(L(Q)-2)

Set i= 2

IP(Q) = (Q-1)Ci -Q+2; IP2(Q)=(Q-1)Ci +1

for k = 1 to IP(Q):

 F(2, k+1) = QC(k+MX-1)CF(1, k)

                 L(Q)-k+1

for Q =3 & 4 :

F(3, k+2) =3C(Q-2)C(k+MX-1)C(k+MX)CF(1, k) 

                   (L(Q)-k+1)C(L(Q)-k)

for Q =4 :

F(4, k+3) =4C(k+MX-1)C (k+MX)C(k+MX+1)CF(1, k) 

               L(Q)-k+1)C(L(Q)-k)C(L(Q)-k-1)

for j=1 to IP2(Q)

for k = 2 to Q

F(1, j) = F(1, j) +F(k, j)     

i = i + 1

For i = 1 to RP(Q)

ASUM(Q) = ASUM(Q) + F(1, i)

OUTPUTS  

P(Q)=D(Q)CASUM(Q)

ER(Q)= 1 - P(Q)

Q=1?

i = R?



FIGURE 3
METHOD OF RECURSIVE CALCULATION FOR NON-PARAMETRIC 1 of m TESTS

Test Type: 1:1
Inputs: N=5 (sample size) R=3 (# Comparison Tests) M=2 (maximum)
Precalculations: D1(1)=N/(N+R) = 5/8
   For j = 2 to M D1(j) = D1(j-1)*(N-j+1)/(N+R-j+1) = 5/8*4/7 = 5/14

Calculations: Cum P1(M)=D1(M) = 5/14; Cum Q1= 1- P1(M) = 9/14 = .6429
--------------------------------------------------------------------------------------------------------------

Test Type: 1:2
Inputs: N=5 (sample size) R=3 (# Comparison Tests) M=2 (maximum)
Precalculations: D2(1)=N/(N+2R) = 5/11
 For j = 2 to M D2(j) = D2(j-1)*(N-j+1)/(N+2R-j+1) = 5/11*4/10 = 2/11

L=N+2R-M = 9; RP = 2+ (R-1) = 4

Initialization Row for R=1 for K = 1 to RP

K = 1 2 3 4= RP

F(1,K)

Formula

1 2M  

L

0 0

F(1,K) 1  4 

9

0 0

Multiplier F(2, K+1) = F(1,K)C [2C(K+M -1)/(L-K+1)]

F(1,k)    

 Multiplier

*  4 

9

 6 

8

 8 

7

Calculations for R = 2

F(1,K) 1  4 

9

0 0

F(2,K) 0 1C 4   = 4 

    9       9 

 6  C 4 =  1 

 8    9      3

0

3 (1 + 2) 1  8 

9

 1 

3

0

Calculations for R = 3

F(1,K) 1  8 

9

 1 

3

0

F(2,K) 0 1 C  4 =  4 

     9      9

 6  C 8 = 2 

  8    9    3  

 8  C 1 =  8 

     7    3     21   

3 (1 + 2) 1  12 

9

1  8 

21

 Calculations:  33(1+2) Row = (1 + 12/9 + 1 + 8/21) = 702/189  
 Cum P2 =  33(1+2) Row x D2 =  (702/189) x (2/11) = .6753;   Cum Q2= 1-P2 = .3247
----------------------------------------------------------------------------------------------------------



FIGURE 3 (cont’d)
Test Type: 1:3

Inputs: N=5 (sample size) R=3 (# Comparison Tests) M=2 (maximum)
Precalculations: D3(1)=N/(N+3R) = 5/14
   For j = 2 to M D3(j) = D3(j+1)*(N-j+1)/(N+3R-j+1) = 5/14*4/13 = 10/91

L=N+3R-M = 12; RP = 3+ 2(R-1) = 7

Initialization Row for R=1 for K = 1 to RP

K = 1 2 3 4 5 6 7=RP

F(1,K)

Formulae

1 3M  

L

3M(M+1)

L(L-1)

0 0 0 0

F(1,K) 1 ½ 3/22 0 0 0 0

F(2, K+1) = F(1, K)C[3C(K+M -1)/(L-K+1)]

 1  F(1, K)st

Multiplier

*  1 

2

 9 

11

 6 

5

 5 

3

 9 

4

 21 

7

F(3, K+2) = F(1, K)C[3C(K+M-1)C(K+M)]/[(L-K+1)C(L-K)]

2  F(1, K)nd

Multiplier

* *  3 

22

18 

55

 2 

3

 5 

4

 9 

4

Calculations for R = 2

F(1,K) 1 ½ 3/22 0 0 0 0

F(2,K) 0 ½ 9/22 9/55 0 0 0

F(3,K) 0 0 3/22 9/55 1/11 0 0

3 (1 + 2 +3) 1 1 15/22 18/55 1/11 0 0

Calculations for R = 3

F(1,K) 1 1 15/22 18/55 1/11 0 0

F(2,K) 0 ½ 9/11 9/11 6/11 9/44 0

F(3,K) 0 0 3/22 18/55 5/11 9/22 9/44

3 (1 + 2 +3) 1 3/2 18/11 81/55 12/11 27/44 9/44

  Calculations: 33(1+2+3) Row = (1 + 3/2 +18/11+81/55+12/11+27/44+9/44) = 7.5182  
 Cum P3 =  33(1+2+3) Row x D3 =  (7.5182) x (10/91) = .8262;   Cum Q3= 1-P3 = .1738

-------------------------------------------------------------------------------------------- 



FIGURE 3(cont’d)
Test Type: 1:4

Inputs: N=5 (sample size) R=3 (# Comparison Tests) M=2 (maximum)
Precalculations: D4(1)=N/(N+4R) = 5/17
   For j = 2 to M D4(j) = D4(j-1)*(N-j+1)/(N+4R-j+1) = 5/17*4/16 = 5/68

L=N+4R-M = 15; RP = 4+ 3(R-1) = 10

Initialization Row for R=1 for K = 1 to RP

K = 1 2 3 4 5 6 7 8 9 10=RP

F(1,K)
Formulae

1 4M 
L

6M(M+1)
L(L-1)

4M(M+1)(M+2)
L(L-1)(L-2)

0 0 0 0 0 0

F(1,K) 1 8/15 6/35 16/455 0 0 0 0 0 0

F(2, K+1) =F(1, K)C [4C(K+M-1)/(L-K+1)]

 1  Multiplierst * 8/15 6/7 16/13 5/3 24/11 14/5 32/9 9/2 40/7

F(3, K+2) = F(1, K)C [6C(K+M-1)C(K+M)]/[(L-K+1)C(L-K))]

2  Multiplier]nd * * 6/35 36/91 10/13 15/11 126/55 56/15 6 135/14

F(4, K+3) = F(1, K)C [4C(K+M-1)C(K+M)C(K+M+1)]/[(L-K+1)C(L-K)C(L-K-1))]

 3  Multiplierrd * * * 16/455 10/91 40/143 7/11 224/165 14/5 40/7

Calculations for R = 2

K = 1 2 3 4 5 6 7 8 9 10=RP

F(1,K) 1 8/15 6/35 16/455 0 0 0 0 0 0

F(2,K) 0 8/15 16/35 96/455 16/273 0 0 0 0 0

F(3,K) 0 0 6/35 96/455 36/273 48/1001 0 0 0 0

F(4,K) 0 0 0 16/455 16/273 48/1001 112 
5005

0 0 0

3
(1..4)

1 16 
15

28 
35

224
455

68 
273

 96  
1001

112 
5005

0 0 0

Calculations for R = 3

F(1,K) 1 16 
15

28 
35

224
455

68 
273

 96  
1001

112 
5005

0 0 0

F(2,K) 0 8 
15

 32  
35

448 
455

 224 
273

 544 
1001

 1344
 5005

 3584 
45045

0 0

F(3,K) 0 0 6 
35

192
455

168
273

 672
1001

 2856
 5005

16128
45045

 6048 
45045

0

F(4,K) 0 0 0 16 
455

32 
273

224 
1001

 1568
 5005

 15232
  45045

12096
45045

40320 
315315

3
(1..4)

1 24 
15

66 
35

880
455

492 
273

1536  
1001

 5880 
 5005

34944
45045

18144
45045

40320 
315315

Calculations: 3 3(1..4) = 12.237; Cum P4 = 12.237*(5/68) = .8998 Cum Q4 = 1- .8998 = .1002
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